A4A NDT Forum 2016 - AutoInspect
Innovative Inspection System for Engine Components

Lufthansa Technik
Content

1. Introduction
2. AutoInspect Overview
3. AutoInspect Qualification
4. Future Outlook
AutolInspect – Introduction

Lufthansa Technik Group – Facts & figures

- 800 customers worldwide
- 20,289 employees worldwide*
- 5,099 billion € in revenue*
- 3,680 aircraft under exclusive contracts
- 33 subsidiaries and affiliates worldwide

* Lufthansa Technik AG Germany and 23 consolidated companies of Lufthansa Technik Group in 2015; employees as of 31.12.2015
AutoInspect – Introduction

Where to find the combustor in the engine?

Combustion Chamber
Digital MRO requires digital inspection!

Crack inspection is one of the most common MRO processes
AutoInspect – Technical Overview

Goal: Automated engine parts repair

Inspection -> Milling -> Welding

defect data -> repair data
AutoInspect – Technical Overview

System Setup

Automated Inspection System

Handling System
Industrial robot
External axis

Sensor System
WLI with linear axis
Laser triangulation sensor

Image Processing System
Image stitching
3D-processing
Crack detection
Crack classification
Crack post processing
Visualization

Industrial robot
Ethernet
External axis
AutoInspect – Technical Overview

Sensor Technology

White light interferometer

Based on “Michelson Interferometer”
AutoInspect – Technical Overview

Sensor Technology

White light interferometer

Path of beam #1 (reference)

1. IR - SLED
2. Lens
3. Beam splitter
4. Reference mirror
5. Device under test
6. Camera

Motion
AutoInspect – Technical Overview
Sensor Technology

White light interferometer

1. IR - SLED
2. Lens
3. Beam splitter
4. Reference mirror
5. Device under test
6. Camera

Path of beam #2 (object)
AutoInspect – Technical Overview

Sensor Technology

White light interferometer

1. IR - SLED
2. Lens
3. Beam splitter
4. Reference mirror
5. Device under test
6. Camera

Movement in z-direction

Optical path difference < coherence length \(\rightarrow\) Interference
AutoInspect – Technical Overview

Sensor Technology

Demodulation \rightarrow Envelope

Detection of maximum intensity \rightarrow Distance to object

moving through scan range \rightarrow z-distances/intensity for every pixel
AutoInspect – System Qualification

How to compare physical different working NDT systems?

Define:

AUTOINSPECT

equivalent or better than

FPI & VI

Measure:

POD-Study

2

Analyze:

\(S = \frac{a_{90/95;FPI}}{a_{90/95;AI}} \)

if \(S \geq 1 \)

no

yes

equivalent or better

approved

 Improve:

Technical improvements

\(a_{90/95;AI} \)

must be equal or smaller

than \(a_{90/95;FPI} \)
Experimental requirements to produce POD curves

\(a_{90}\): crack length, which is detected with a probability of 90%, i.e. \(P(a_{90}) = 0.9\)

\(a_{90/95}\): crack length, which is detected with a probability of 90% and confidence limit of 95% over all measurements, i.e. \(P_{L}(a_{90/95}) = 0.9\)
Experimental requirements to produce POD curves

90% POD

Crack

With influence of the operator

90% POD

95% confidence limit (over all measurements)

length

\(a_{90}\)

\(a_{90}/95\)
AutoInspect – System Qualification

Watch out for common pitfalls using POD!

- Underestimating the influence of sample geometry on POD performance
- Underestimating the influence of informed/uninformed inspectors on POD performance
- Wrong definition of crack size distribution during POD experiment
- Deleting “outliers” that do not “fit” to other inspection results

Recommendation:
Study POD literature or consult POD experts before conducting any experiments!
AutoInspect – System Qualification

Summary POD

- POD method is the industry standard for qualification of new NDT systems
- POD method is the best way to consider the random nature of inspection processes
- POD method creates transparency of inspection system performance
- POD method allows a comparison of physically different inspection systems (unlike R&R)
- POD method is compatible to DTD and fits nicely into Part Life Management
Any questions?

Mr. Michael Ernst
Project Manager
Innovation Management and Product Development
Lufthansa Technik AG
Dept. Engine Services, HAM WT/Z
Weg beim Jäger 193
22335 Hamburg, Germany
Phone: +49-40-5070-67367
michael.ernst@lht.dlh.de

Mr. Karsten Ross
NDT Process Engineer
EN4179 Level 3: ET/MT/PT/RT/UT
Lufthansa Technik AG
Dept. HAM WR127
Weg beim Jäger 193
22335 Hamburg, Germany
Phone: +49-40-5070-64207
karsten.ross@lht.dlh.de

Copyright © 2016 Lufthansa Technik AG. All rights reserved.

The information contained in this presentation is proprietary to Lufthansa Technik AG and is disclosed in confidence. The presentation and the information contained herein shall be kept strictly confidential and shall not be used, disclosed to others or reproduced without the expressed written consent of Lufthansa Technik AG. Nothing contained in this publication shall constitute any warranty, guarantee or liability for Lufthansa Technik AG, its subsidiaries and affiliates, but is for information purposes only. Accordingly, Lufthansa Technik AG, its subsidiaries and affiliates neither expressly nor conclusively accept responsibility or liability for the actuality, accuracy and completeness of the statements and information contained in this publication.