

1

Detecting Major Damage in Internal Composite Structural Components

Hyonny Kim, Professor

Department of Structural Engineering Center for Aviation Safety and Composite Structures University of California San Diego hyonny@ucsd.edu

2016 Airlines for America Nondestructive Testing Forum 26-29 September 2016, San Diego CA

Acknowledgement: FAA Joint Advanced Materials and Structures Center of Excellence (JAMS CoE); David Westlund, Rusty Jones, Larry Ilcewicz

Structural Engineering @ UCSD

- Structural Engineering @ UCSD has <u>unique</u> <u>vision</u> focusing on <u>all types of structures</u>:
 - aerospace, marine, wind, bio, civil, geo
 - wide length scales: blood cell \rightarrow full aircraft
 - experimental evaluation & simulation
 - SHM and NDE grad & u-grad programs
- Key component of SE@UCSD is the Powell Structural Research Labs
 - world-class large-scale facilities
 - offers unique capabilities:
 - » 52 MN (12 Mlbs) dynamic test machine
 - » facility simulating blast impulse

Landing Gear Brace Certification Test

approved for public

Center for Aviation Safety and Composite Structures

- Aerospace airframes and structures are now in the composites age
 - similar trend in other areas: automotive, marine, infrastructure, etc.
- <u>UCSD Composites Aviation Safety Center</u> addresses major issues
 - structure/system-level structural evaluation, non-destructive evaluation and health monitoring/management
 - modeling and simulation, optimization
 - material-scale research, processing

Motivation

- damage from ground service equipment (GSE) can be difficult to visually detect
 - blunt impact damage problem
- key interest: presence of major damage to internal structure (frame, shear tie, stringer)
 - cracks usually not detectable by typical one-sided NDE from external skin
- need quick NDE tool to decide if further inspection/action needed

Objectives

- establish detection method for finding major damage to <u>internal</u> structure:
 - severely cracked frames
 - damaged shear ties
 - stringer heel crack
- detection performed only from exterior skin-side
- system must be "ramp friendly"
- Ionger-term: relate NDE-measurements with damage location, mode, and size/severity

Approach

- pitch-catch guided wave approach
- structures of interest form waveguide paths
- C-frame is like 1D waveguide wave transmission along length affected by damage
 - excitation → through skin → in through shear tie → travel along frame → out through various shear ties → through skin → sensor
 - broken shear tie and frame will attenuate/modify signal
- key issues:
 - dominant frequencies associated with waves/modes sensitive to damage
 - complex geometry, many interfaces
- stringer heel crack wave propagation through skin and stringer paths

Test Specimens

Use Existing Damaged Specimens

- previously-tested specimens from FAA project "Impact Damage Formation on Composite Aircraft Structures"
- FrameXX panel series
 - C-frame crack
 - shear ties crushed
- StringerXX panel series (stringer-only panels)
 - stringer-skin disbonding
 - stringer heel crack
 - shear ties crushed

New Specimens

- C-frames pristine stand-alone frames
 - 3 new frames fabricated
 - 1 previously-fabricated "spare"
- shear ties qnty ~16 available "new" untested

Prior Specimens – Damage Survey

Blunt Impact Damage in Existing Specimens – use for NDE Tests

- partially-cracked frame available in panel Frame02
- cracked/crushed shear ties in all specimens (Frame01 to Frame04)
- stringer disbonds in panel Stringer02
- stringer heel crack in panel Stringer05

Partially-cracked frames – from specimen Frame02

Equipment: Test Setup

Seeking equipment allowing assembly of "ramp-friendly" portable system.

Sensor Hold Downs

Sensor Hold Downs made from 3D printing to hold sensors on the composite components

Sensor Hold Downs

 Sensor Hold Down Mounted onto Composite Panel Skin using Air Suction Cup (Left) and Composite C-frame using Double Sided Tape (Right).

Frame Only

GUW Tests on Damaged C-Frame

Frequency sweep conducted to find dominant frequencies (80 kHz shown below).

Expect: presence of damage \rightarrow attenuation of signal.

Damaged C-frame installed in panel:

- significant attenuation (55%) through damaged path
- <u>crack in C-frame flange detectable</u> for sensors directly mounted to frame – next: test sensing through skin

Shear Ties Only - Measure From Skin to Frame (External & Internal Access)

Frame02 Panel Experiment

 Guided Ultrasonic Wave Test Performed on Frame02 Panel to Observe Wave Propagation through Different Shear Tie Damage Cases

Shear Tie 11

Shear Tie 06

Skin to C-Frame Mid

- Shear Tie 11 is Undamaged
- · Shear Ties 06 has partially cracked at the corner
- Shear Ties 02 has completely cracked along the bolt lines

Shear Ties With Skin

- Measure From Skin Side (Only External Access)

Frame02 Panel Experiment

- GUW Test on C-frame02 Section:
 - Skin to Skin Test with Existing Damage on C-frame02 Section

Shear Tie 07

Frame02 Panel Experiment

- GUW Test on C-frame02 Section:
 - Skin to Skin (Damaged Path through ST06 vs. Undamaged Path through ST08)

- GUW test result: 150kHz Excitation
 - Excited from ST07 Skin to ST08 Skin and ST06 Skin

Other Transmission Studies

Path: Through Skin vs. Into C-Frame UCSD

Frame02 Panel: Skin vs C-frame

• Frame02 Panel: Skin vs C-frame

Transmission Through Bolted Joints

Bolt Torque Effect

- Wave is actuated from the exterior skin → received from shear tie at frame location
- Frequency sweep test performed from 50 – 250kHz with different torque levels:
 - » hand tight to 70 in-lbf
- From previous sensor tests, sensor transmits and receives predominantly:
 - » in-plane waves at 150kHz
 - » out-of-plane waves at 50kHz

Bolt Torque Differences

Department of Structural Engineering

⊨] |(

Bolt Torque Differences

Bolt Torque Summary:

- At 50 kHz, non-monotonic behavior, with peak transmission at 20in-lbs
- At 150 kHz, no strong dependency on bolt torque above 20 in-lbs
 - assumed to be from sensor's in-plane dominant sensitivity at 150 kHz
- At 250 kHz, increasing bolt torque from 20 to 70in-lbs shows almost linearlyincreasing wave energy transmission
- Transmission sensitive to toque, frequency and sensor

Summary

- Proposed methodology found capable of detecting major damage in frame
 - guided wave tests showed significant acoustic wave attenuation for cracked frame & shear ties
- External-side measurements able to find damage
 - many issues: frequency selection, effects of joints, repeatable coupling quality
- Current/future activity
 - advanced signal processing algorithms
 - multiple features used to form statistics-based damage detection criteria
 - demonstrated to work well for skin-adjacent damage
 - need to build stronger foundational understanding of response especially in order to relate measurements with damage information (damage mode, size estimate)

Acknowledgement: research conducted via funding from FAA JAMS CoE (Joint Advanced Materials Center of Excellence), Program Manager David Westlund. Also thanks to Rusty Jones and Larry Ilcewicz of FAA.