CFM56 TRF Eddy Current

Sam Tucker NDT Process Engineering SFOEP

Jason Meade Quality Control HOUQC

A STAR ALLIANCE MEMBER

2015 A4A NDT Forum Fort Lauderdale, FL

Overview

UA operates over 750 engines affected by AD's 2009-03-09 and/or 2010-01-05. Worldwide, the CFM56-7 engine fleet is nearly 8,400.

Compliance Requirements

CFM SB's 72-0568 and 72-0579 provide the inspection details for the repetitive on-wing eddy current inspections. SB effectivity is dependent upon TRF part number. AD is applicable only to part numbers in SB 72-0579.

The procedure as written:

Choose the probe for the area Set up on the reference standard

Identify the inspection areas

Identify the inspection areas- area C1

Identify the inspection areas- area C2

What does it look like when we scan across the weld?

Rejectable signal = 1.5 divisions. Houston, we have a problem!

The next step

Contact Safran via GE rep asking for help

Initial response, use FPI; this was later rescinded, with the following email...

"November 05, 2014

Dear Customer,

CFM has no objection that UA develops a specific probe for ECI inspection of weld beads..." Stephane Furic, CFM PSE

Developing a probe

We had a good idea that the answer was most likely a dual coil probe for inspecting the weld. This still left a problem:

How do we try out what is available without spending a lot of money on R&D?

November 2014- SB 72-0568 due- we have an inspection to prototype on live aircraft and no solution yet...

- Contacted GE and Olympus- both were willing to help
- Borrowed "Weldscan" probe to attempt a solution

The Southwest Factor

One more thing to try...

The Eureka! Moment...

- Neither of the borrowed weld probes we tried would set up on the ref standard...
- The Uniwest US-1839 gave a nice signal on the reference standard. Instead of 10 degrees of separation, we had 180!

NULL						FREQ 1. o MHZ
ERASE						ANGLE 89. 0
LOG/ Enter						GAIN
FREEZE			-			H GAIN 47.0 db
PRINT						V GAIN 67.0 db
						,

Will the US-1839 work on the scrap frame?

YES!

But what is this???

NULL	Crack Indication	FREQ 1. 0 MHZ
ERASE		ANGLE 89. 0
LOG/ Enter	Lift Off Indication	GAIN
FREEZE		H GAIN 47.0 db
PRINT		V GAIN 67.0 db
	1	

The scrap frame section is cracked in area C1!

Refining the solution- can we get a modified US-1839?

We need a shorter version- Uniwest comes through with US-3530

Next stop- Paris

All done but....

Conclusion

- Once approved, this solution will save millions in engine changes while enhancing POD
- Safran has projected approval for 4Q 2015
- SB revision will hopefully provide global AMOC
- Collaboration made it happen- thanks to all!

Dorsey Perkins, Southwest Airlines Nellie Mauzey, GE Strother Bryan Leach, Uniwest Jason Meade, United Airlines Cyril Collot, Safran

Questions?

