Overview

UA operates over 750 engines affected by AD’s 2009-03-09 and/or 2010-01-05. Worldwide, the CFM56-7 engine fleet is nearly 8,400.
Compliance Requirements

CFM SB’s 72-0568 and 72-0579 provide the inspection details for the repetitive on-wing eddy current inspections. SB effectivity is dependent upon TRF part number. AD is applicable only to part numbers in SB 72-0579.
Inspection Area
The procedure as written:

Choose the probe for the area
Set up on the reference standard
Identify the inspection areas
Identify the inspection areas - area C1
Identify the inspection areas - area C2
What does it look like when we scan across the weld?

Rejectable signal = 1.5 divisions. Houston, we have a problem!
The next step

Contact Safran via GE rep asking for help

Initial response, use FPI; this was later rescinded, with the following email…

“November 05, 2014

Dear Customer,

CFM has no objection that UA develops a specific probe for ECI inspection of weld beads…”

Stephane Furic, CFM PSE
Developing a probe

We had a good idea that the answer was most likely a dual coil probe for inspecting the weld. This still left a problem:

How do we try out what is available without spending a lot of money on R&D?
November 2014 - SB 72-0568 due - we have an inspection to prototype on live aircraft and no solution yet...

- Contacted GE and Olympus - both were willing to help
- Borrowed “Weldscan” probe to attempt a solution
The Southwest Factor
One more thing to try…
The Eureka! Moment…

- Neither of the borrowed weld probes we tried would set up on the reference standard…
- The Uniwest US-1839 gave a nice signal on the reference standard. Instead of 10 degrees of separation, we had 180!
Will the US-1839 work on the scrap frame?

YES!

But what is this???
The scrap frame section is cracked in area C1!
Refining the solution - can we get a modified US-1839?
We need a shorter version—Uniwest comes through with US-3530
Next stop- Paris
All done but....

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

[THINKSTOCK]
Conclusion

- Once approved, this solution will save millions in engine changes while enhancing POD
- Safran has projected approval for 4Q 2015
- SB revision will hopefully provide global AMOC
- Collaboration made it happen- thanks to all!

Dorsey Perkins, Southwest Airlines
Nellie Mauzey, GE Strother
Bryan Leach, Uniwest
Jason Meade, United Airlines
Cyril Collot, Safran
Questions?