

Microwave Coating Thickness Inspection for Aerospace Composite Structures

Airlines for America NDT Forum

September 22-25, 2014

Presented by: Jesse McDaniel

11525 Stonehollow Drive, Suite A120, Austin, TX 78758 Office: (512) 535-7791 • Fax: (512) 206-4966 www.systemsandmaterials.com

Systems and Materials Research Corporation (SMRC)

Background

Substrate Composition

Microwave Theory

MNDE Toolkit

Analysis

Summary

- Small business founded in 1998
- Based in Austin, Texas
- Heavy R&D/product development concentration
 - Outsourced manufacturing
 - Licensing
 - Strategic Partnering
- Three key manufacturing technologies developed for military aerospace platforms
 - Intelligent Sealant Application System (ISAS[™])
 - *Qwik*Seal[®] pre-sealed aircraft fasteners
 - Microwave Nondestructive Evaluation (MNDE) Toolkit[™]

QwikSeal[®] is a registered trademark of SMRC ISAS[™] and MNDE Toolkit[™] are trademarks of SMRC

Industry Need

Background Substrate Composition Microwave Theory	MNDE Toolkit	Analysis	Summary
---	--------------	----------	---------

- Use of composite materials has expanded rapidly in aerospace and other industries
- Many of the traditional NDI methods must be reevaluated for accuracy and some have proven to no longer function as intended
- Aerospace manufacturers and maintainers are currently seeking replacement technologies for accurate coating thickness measurement over composite structures

Global Carbon Fiber Market

- 80,000 90,000 metric tonnes per year expected by 2015
- Aerospace segment comprises 10-20% of global market

* "The Use of Composites in Aerospace," Avalon Consultancy Services Ltd. Accessed 2013, http://avaloncsl.files.wordpress.com/2013/01/avalon-theuse-of-composites-in-aerospace-s.pdf.

Coating Thickness Inspection

Background

Substrate Composition Microwave Theory

ory MNDE Toolkit

Analysis

Summary

- Nondestructive inspection (NDI) technologies used to monitor coating thickness to detect:
 - undercoated substrates, can lead to early substrate failure
 - overcoated substrates, which contribute to aircraft weight
 - effect the efficacy of lightning strike protection mechanisms, especially expanded copper foil (ecf) mesh

Figure 1 – Example of a composite coating matrix from a cross-sectional micrograph of coating over an aerospace composite panel with expanded copper foil.

Microwave Non-Destructive Evaluation

ESTING FORUM

lines fo perica • Simple microwave and electronic components

Analysis

- Well-founded, innovative calibration software
- Highly accurate coating thickness measurements

MNDE Toolkit

- Ability to see surface characteristics through coatings
- Robust software-defined functionality
- Ideal technology for composite coating thickness measurement

Using this foundation we can build standalone and custom integrated solutions using our MNDE technologies.

Summary

MNDE Toolkit[™]

Background

MNDE Toolkit

Analysis

Summary

- Software-defined, multi-function portable NDE system
 - Coating thickness
 - Hidden fastener
 detection
 - Corrosion under specialty coatings

Hardware built and tested at Lockheed, Northrop, and JAX. Hardening required before fleet-ready. Many enhancements under discussion.

MNDE Toolkit™

Баскугоции	Substrate Composition	where theory	IVINDE TOOIKIL	Allalysis	Suillia
			The MNDE To adapted to pre capabilities in system. Coatin approximately metallic subst can provide co as well as iden elements such	olkit Remote Pro ovide wireless x, a handheld, eas ng thickness accu / ± 1% for compo rates. Imaging ca prrosion and flav ntification of sub n as fasteners for	be can be y scanning y-to-use uracies are osite and apabilities v detection -surface r repair

٢V

BladeChek™

Dackground

MNDE Toolkit

Analysis

Summary

- Designed to measure erosion coating thickness on highly curved surfaces
- Proprietary laser pitch/catch system measures only when microwave is normal to surface

Self-contained coating measurement solution for high radius of curvature and flat applications. Calibration requires computer. Commercially available.

Test Case – Aerospace CFRP

MNDE Toolkit

Analysis

Summary

- Provided sample panel sets from aerospace manufacturer
- SMRC performed calibration, sampling and analysis of capabilities over samples
- Improvements made to microwave system to increase accuracy to customer desired 15 micron accuracy

The Remote Probe detects the "peaks and valleys" of the ecf and carbon fiber with rotation of the tool, causing changes in the signal and prediction capability.

Test Case – Aerospace CFRP

Background	Substrate Composition	Microv	vave Theory	MNDE To	olkit Analysis	Summary
Further ex	xperiments	,ielde	d	• An	tennae change	s to reduce
increased	l accuracy fro	om		SUI	rface irregularit	ty effects
improven	nents to Rem	note F	robe	• Se	lective standoff	and
Changes resulted in	to microwave o accuracy impr 15 microns	configu oveme	uration nt to +/-	cal • Sig inc	libration Inal conditionin creased gain	g using
			Chandard	Manual an of	6	
Sam	nle Set	Mean	Standard	Number of	Specification for 95%	Predicted Yield for
Sam	ple Set	Mean	Deviation	Samples	Specification for 95% Confidence Interval	Predicted Yield for +/- 15 microns
Sam Nor-1 Initial	ple Set	Mean 121	Deviation 113	Samples 1250	Confidence Interval	Predicted Yield for +/- 15 microns 11.16
Sam Nor-1 Initial Nor-2 Initial	ple Set	Mean 121 4	Deviation 113 86	Samples 1250 4500	Confidence Interval 161	Predicted Yield for +/- 15 microns 11.16 32.66
Sam Nor-1 Initial Nor-2 Initial Nor-1 Slot Antenr	ple Set	Mean 121 4 -3	Deviation 113 86 23	Samples 1250 4500 3500	Specification for 95% Confidence Interval 161 121 64	Predicted Yield for +/- 15 microns 11.16 32.66 63.18
Sam Nor-1 Initial Nor-2 Initial Nor-1 Slot Antenn Nor-2 Slot Antenn	ple Set	Mean 121 4 -3 14	Deviation 113 86 23 29	Samples 1250 4500 3500 3000	Specification for 95% Confidence Interval 161 121 64 24	Predicted Yield for +/- 15 microns 11.16 32.66 63.18 75.7
Sam Nor-1 Initial Nor-2 Initial Nor-1 Slot Antenn Nor-2 Slot Antenn Nor-1 Adjusted St	ple Set na na tandoff	Mean 121 4 -3 14 -7	Deviation 113 86 23 29 31	Samples 1250 4500 3500 3000 3000	Specification for 95% Confidence Interval 161 121 64 24 85	Predicted Yield for +/- 15 microns 11.16 32.66 63.18 75.7 31.29
Sam Nor-1 Initial Nor-2 Initial Nor-1 Slot Antenr Nor-2 Slot Antenr Nor-1 Adjusted St Nor-2 Adjusted St	ple Set na na tandoff tandoff	Mean 121 4 -3 14 -7 -6	Standard Deviation 113 86 23 29 31 24	Number of Samples 1250 4500 3500 3000 3000 9000	Specification for 95% Confidence Interval 161 121 64 24 24 85 61	Predicted Yield for +/- 15 microns 11.16 32.66 63.18 75.7 31.29 60.87
Sam Nor-1 Initial Nor-2 Initial Nor-1 Slot Antenr Nor-2 Slot Antenr Nor-1 Adjusted St Nor-2 Adjusted St Nor-1 with Gain a	ple Set na na tandoff tandoff and Adjust Standoff	Mean 121 4 -3 14 -7 -6 -9	Standard Deviation 113 86 23 29 31 24 17	Number of Samples 1250 4500 3500 3000 9000 3500	Specification for 95% Confidence Interval 161 121 64 24 24 85 61 23	Predicted Yield for +/- 15 microns 11.16 32.66 63.18 75.7 31.29 60.87 49.03
Sam Nor-1 Initial Nor-2 Initial Nor-1 Slot Antenr Nor-2 Slot Antenr Nor-1 Adjusted St Nor-2 Adjusted St Nor-2 with Gain a Nor-2 with Gain	ple Set na na tandoff tandoff and Adjust Standoff	Mean 121 4 -3 14 -7 -6 -9 6	Standard Deviation 113 86 23 29 31 24 17 23	Number of Samples 1250 4500 3500 3000 9000 3500 4500	Specification for 95% Confidence Interval 161 121 64 24 24 85 61 23 53	Predicted Yield for +/- 15 microns 11.16 32.66 63.18 75.7 31.29 60.87 49.03 56.71

Other Aerospace Samples

Substrate Composition **MNDE** Toolkit Background **Microwave Theory** Analysis Summary Measured vs actual 14 comparison using cross-11 62835333 12 9271 section/optical measurement 12 Range of coatings from 2-14 mils thick on cfrp with ecf 10 091666667, 9.529223485 MNDE Toolkit shows accurate, 7,665,8.331 8 precise, and repeatable Actual 556666667, 7.073 results 6 Down-selected as best tool 8.088333333, 5.53522096 for coating thickness for 1deal large-scale platform repair z

0

FESTING FORUM

0

2

4

6

Measured

14

10

12

Future Work

MNDE Toolkit

Analysis

Microwave Theory

•	Currently the MNDE Toolkit Remote Probe is a software-defined system	Mating
	 Requires tether to computer Provides extra capabilities such as fastener and corrosion detection 	 Image: Second and a second and
•	 SMRC will bring a single, self- contained unit to the marketplace in the next generation Remote Probe <i>No computer tether required</i> <i>Provides coating thickness</i> <i>measurements only</i> 	Image: Section of the section of th
•	R&D focused on eliminating rotational uncertainty over expanded copper foil composite substrates	

Background

Substrate Composition

Summary

Commercial Status

MNDE Toolkit

|--|

- Current system is commercially available for purchase with a production lead time
- Interested in licensing technology dependent upon customer commitments and market size
- Incorporation of feature/requirements above and beyond the current system will be evaluated based on customer commitments/requirements

