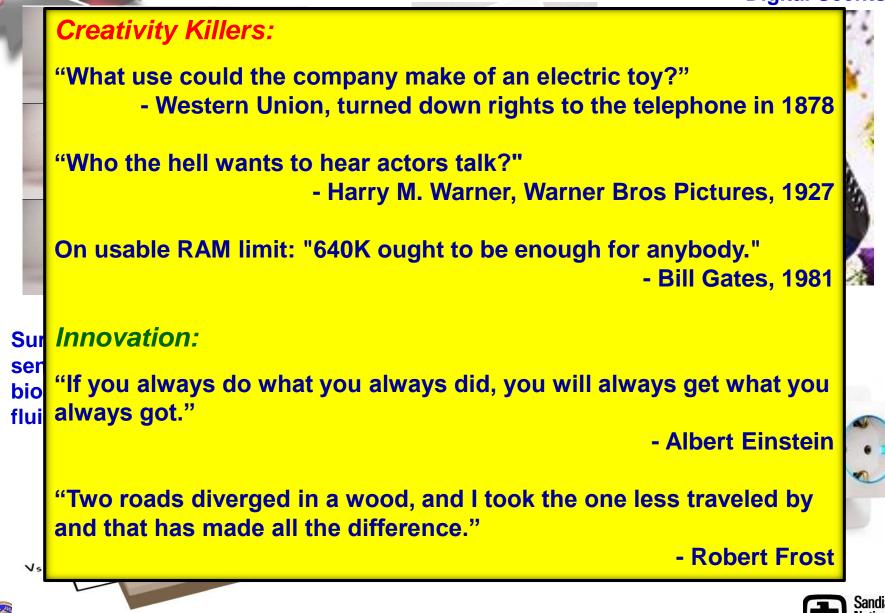
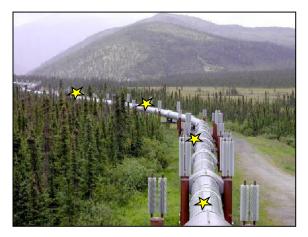
Structural Health Monitoring for Aircraft: Viable Inspection Tool or Passing Fancy?



Sandia National Labs FAA Airworthiness Assurance Center

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

Digital Scents

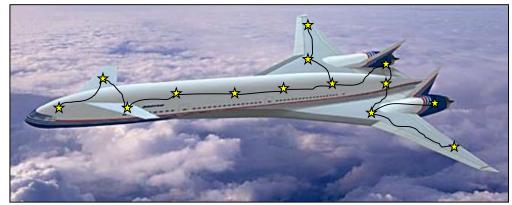


Technical Center

Distributed Sensor Networks for Structural Health Monitoring

Smart Structures: include in-situ distributed sensors for real- time health monitoring; ensure integrity with minimal need for human intervention

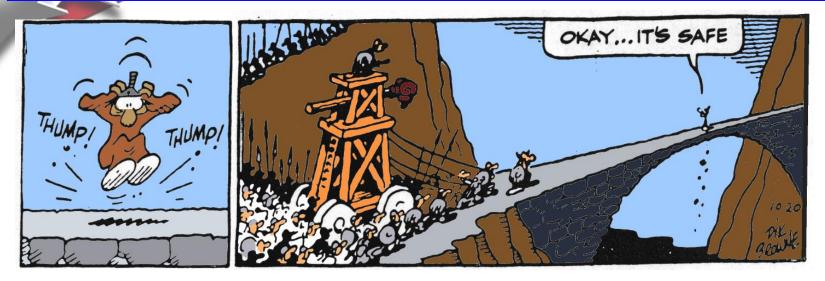
Remotely monitored

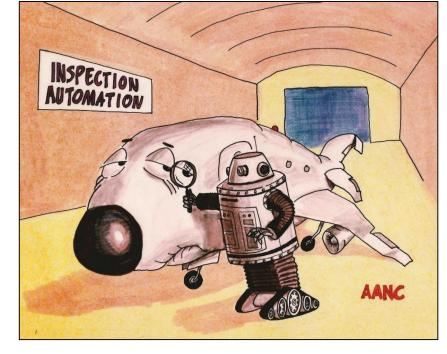


 Automatically process data, assess structural condition, & signal need for maintenance actions

sensors allow for

condition-based


maintenance



Structural Health Monitoring Dates Back Many Years

Definition is somewhat agreed upon. Usage and deployment covers a wide range of thoughts and options.

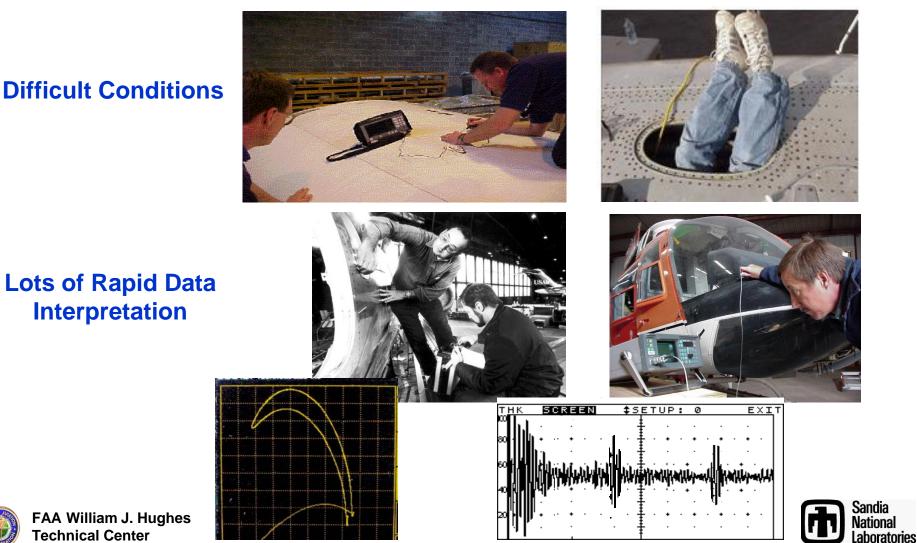
NDI vs. SHM – Definition

Nondestructive Inspection (NDI) – examination of a material to determine geometry, damage, or composition by using technology that does not affect its future usefulness

- High degree of human interaction
- Local, focused inspections
- Requires access to area of interest (applied at select intervals)

Structural Health Monitoring (SHM) – "Smart Structures;" use of NDI principles coupled with in-situ sensing to allow for rapid, remote, and real-time condition assessments (flaw detection); goal is to reduce operational costs and increase lifetime of structures

- Greater vigilance in key areas address DTA needs
- Overcome accessibility limitations, complex geometries, depth of hidden damage
- Eliminate costly & potentially damaging disassembly
- Minimize human factors with automated data analysis



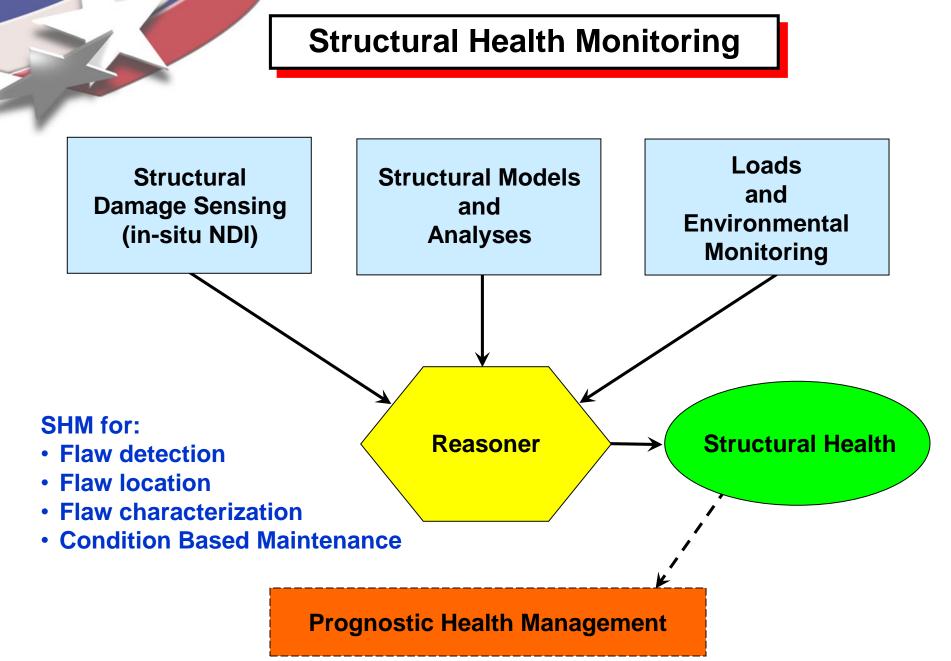
The Trouble with Math or.....

How do we calculate Damage Tolerance ??

Difficulty in loads assignment, stress and fatigue calculations produces demands on NDI - "You want me to find a flaw where, and how small??"

Benefits of SHM

Near-Term


- Elimination of costly & potentially damaging structural disassembly
- Reduced operating and maintenance costs
- Detection of blunt impact events occurring during normal airplane operations
- Reduction of inspection time
- Overcome accessibility & depth of flaw impediments
- Early flaw detection to enhance safety and allow for less drastic and less costly repairs
- Minimized human factors concerns due to automated, uniform deployment of SHM sensors (improved sensitivity)
- Increased vigilance with respect to flaw onset

Long Term

- Optimized structural efficiency
- New design philosophies (SHM designed into the structure)
- Weight savings
- Substitution of condition-based maintenance for current time-based maintenance practices

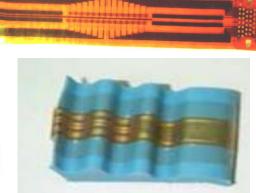
SHM Impediments & Challenges

Cost of sensors and sensor systems and airworthiness requirements

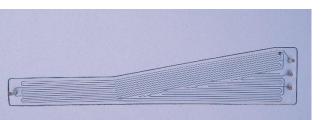
- Ease of use and coverage area small-scale damage must be detected in large-scale structures
- Time for after-market installations inconvenient MTC visits
- Need for rapid customization of sensors
- Need for substantial business case (cost-benefit analysis) operators must realize benefits of multi-use
- Who own's technology? (centralized OEM approach may be best/safest)
- Validation activities reliability of SHM systems must be demonstrated
- Validation activities field trials on operating aircraft is necessary but time consuming
- Certification need to streamline specific applications; technical, educational and procedural initiative (OEMs, operators, regulators)
- Standardization needed for validation and certification activities
- Implementation requires changes in maintenance programs

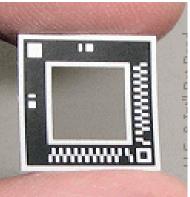
Is Structural Health Monitoring a Viable Alternative Today?

- Evolution of miniaturized sensors & supporting technology
- Design of turnkey systems with reasonable costs
- Ability to monitor new & unexpected phenomena (new inspection needs; DTA and rapid flaw growth)
- Promise for technical & economic gains more clearly defined
- OEM willingness to explore SHM merits
- Long-term prognosis -
 - Complete health assessment with network of SHM "nerves"
 - Automated data transmission (real-time monitoring; alarms)
 - Embedded sensors (MEMS)
 - Improved diagnostics using neural networks (historical data)
 - Direct ties to maintenance planning and actions
 - Reduction in life-cycle costs



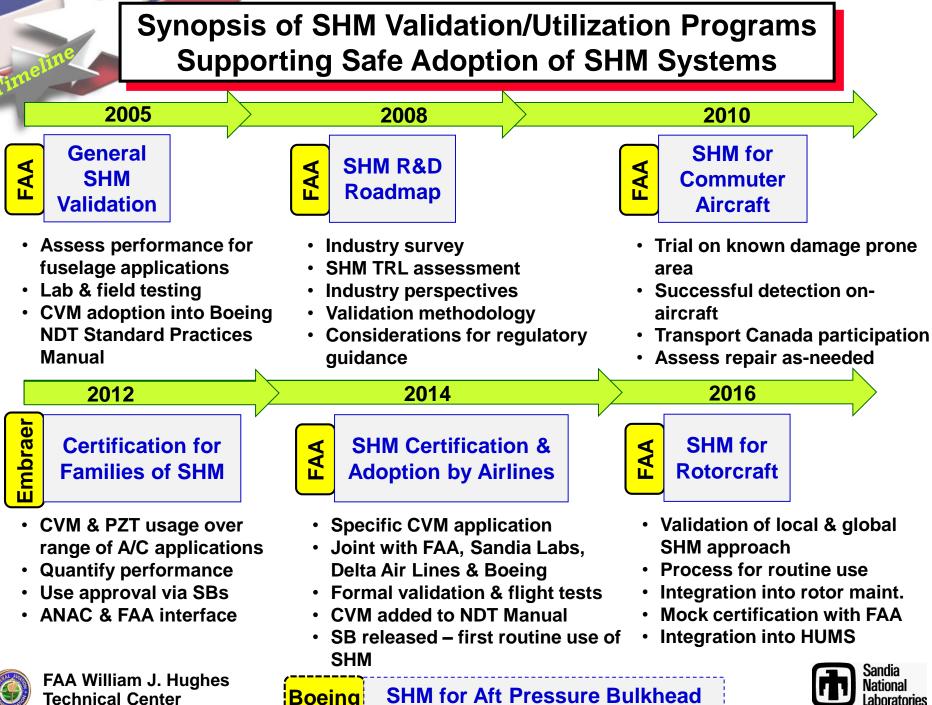
Sampling of SHM Sensors


Cumulative Environmental Corrosion Sensor

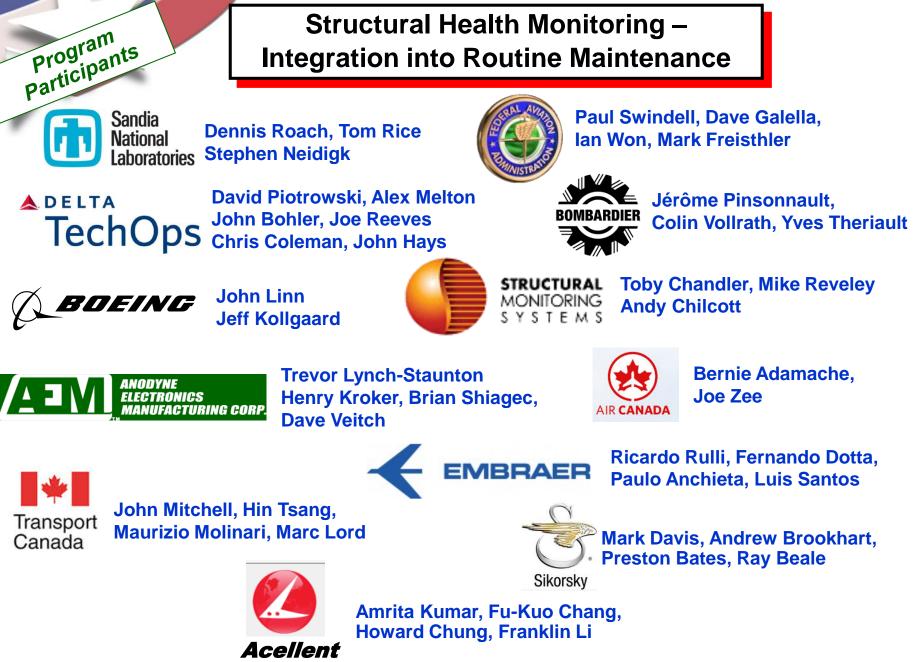

SMARTape Membrane Deformation Sensor

Vibro Fibre SHM Sensor

Flexible Eddy Current Array Probe



Direct Measurements Strain Sensor



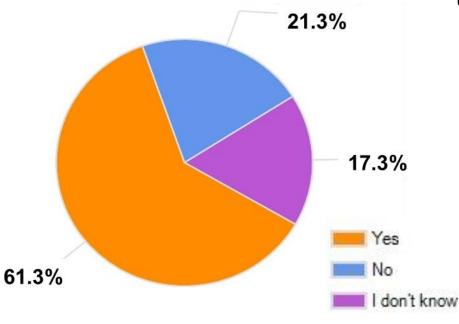
FAA William J. Hughes Technical Center **Comparative Vacuum Monitoring Sensor**

Technical Center

SHM for Aft Pressure Bulkhead

SHM Survey of Aviation Industry

Owners/Operators	OEMs	Regulators	Maintainers
All Nippon Airways	Airbus	Air Transport	Aerotechnics Inc
American Airlines	Astronics-Adv. Electronic	Association	Air New Zealand
Austrian Air Force	Systems	CAA - NL	China Airlines
China Airlines	Avensys Inc.	CAA - Bra	Christchurch Engine Centre
Continental	BAE systems	EASA	Fokker Aircraft Services B.V.
Airlines	Bell Helicopter Textron	FAA	Fuji Heavy Industries, Ltd.
Delta Air Lines	Boeing	NAVAIR	Jazz Air LTD
Federal Express	Bombardier Aerospace	NAWCAD	Lufthansa Technik AG
Finnair	Cessna Aircraft Company	Transport Canada	NASA
Hawaiian Airlines	Dassault Aviation	(TCCA)	Olympic Airways Services
Japan Airlines	EADS Military Air Systems	USAF	S.A.
Jazz Airlines	Embraer	US Army	SAA Technologies
Jet Blue Airways	Goodrich	USCG	SR Technics Switzerland LTD
Kalitta Air LLC	Honeywell	US Navy	Texas Aero Engine Services
NASA	Lockheed Martin Aeronautics		Timco / GSO
Qantas Airways	Messier-Dowty		United Airlines
Singapore Airlines	Mistras Group, Inc		USAF
Swiss Air	Polskie Zaklady Lotnicze Sp.		US Army
United Airlines	PZL Swidnik		USCG
US Airways	Rolls-Royce Corp		US Navy
USAF	Systems & Electronics, Inc.		-
US Army	TecScan		
USCG			
US Navy			



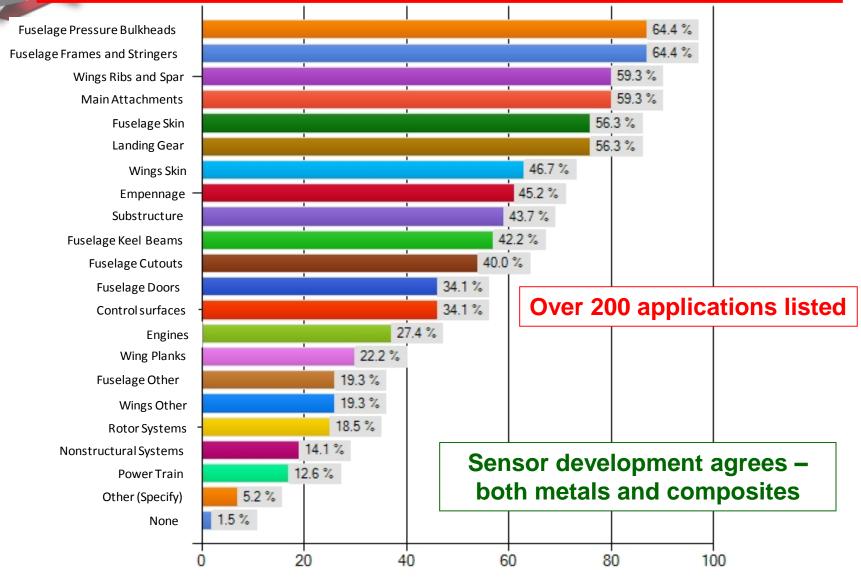
Over 450 responses from OEMs, regulators, operators, and research organizations.

SHM Survey Results – Viability & Airline/OEM Usage

Does the sensor have a failsafe feature which will prevent the acquisition of faulty data from a damaged or failed sensor?

> 52% Yes 48% No

Does the system contain a built-in selfdiagnostic capability to automatically interpret the data?


> 60% Yes 40% No

- 55% of <u>aircraft operators, maintainers, and military personnel</u> say that 5 years is a reasonable payback period for recouping the cost associated with using an SHM system
- 31% say 2 years is reasonable

Areas Respondents Feel SHM Solutions are Viable

Number of Responses

Aerospace Industry Steering Committee on Structural Health Monitoring (AISC SHM)

First meeting of AISC-SHM Recognized need for **Stanford University** Palo Alto, CA October 2006

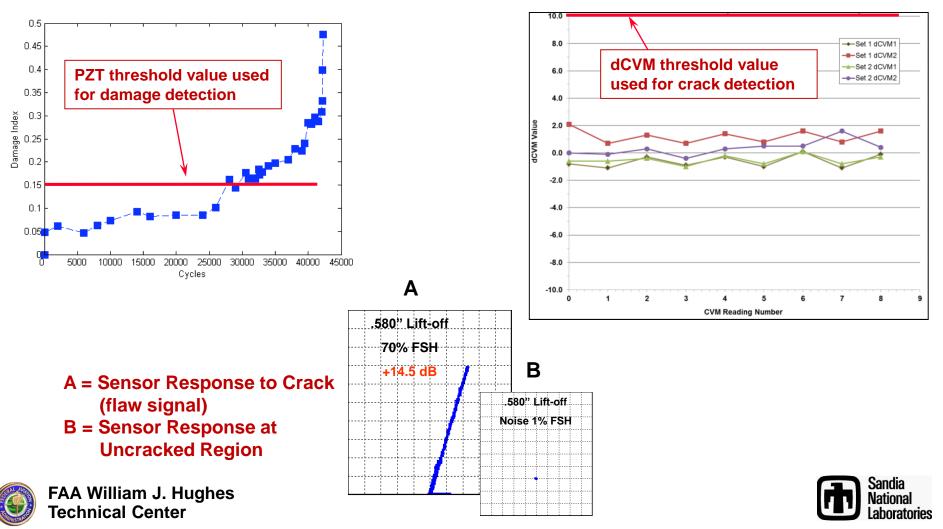
20th meeting of AISC-SHM **OGMA MRO** Lisbon, Portugal **April 2016**

standardization

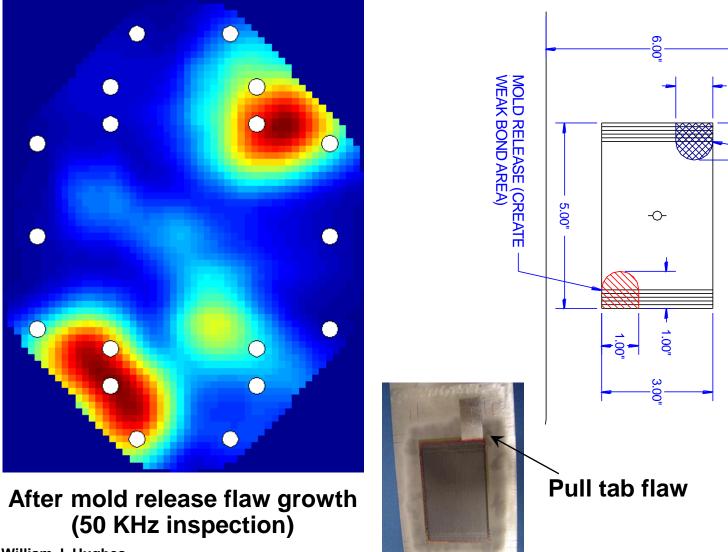
ARP – Guidelines for SHM Implementation

The mission of the AISC-SHM is to provide an approach for standardizing integration and certification requirements for SHM of aerospace structures, which will include system maturation, maintenance, validation and introduction into accepted maintenance practices.

- The focus is the <u>development of cross-industry guidebooks</u> describing approaches to safely deploy SHM systems on fixed wing aircraft and rotorcraft and guidelines for the proper validation and certification of SHM solutions.
- SAE International Aerospace Recommended Practices document: ARP6461 "Guidelines on the Implementation of Structural Health Monitoring on Fixed Wing Aircraft" (September 2013)



An SAE Interna	Aerospace	AEROSPACE		96461	
er orst, mernadonar er ogo		PRACTICE	Issued	Issued Proposed Draft 2012-11-28	
	Guidelines for Implen	nentation of Structural Health 1	Monitoring on Fixed W	ïng Aircraft∣	
		RATIONALE			
aerospace stakeholde Suppliers a of solution	applications is an activity s: Regulatory Agencies, re crucial to the process of	Monitoring (SHM) technologies to y that spans multiple engineerin Airlines, Original Equipment M f certifying viable SHM solutions, practices for reaching those solu	ng disciplines. It is al anufacturers (OEM), A Thus a common langua	so recognize cademia an ge (definition	d that man d Equipmer s), framewor
		TABLE OF CONTENT	s		
1.	SCOPE				
1.1	Purpose				
1.2		Desument			
.3 .3.1		Document			
1.3.2	General Approach				
.3.3	Evolution of Aircraft P	roducts Including Structures and !	SHM Systems		
.3.4	Requirements, V&V, a	and Certification			
2.	REFERENCES				
2.1	Applicable Documents	s			
2.1.1					
2.1.2 2.1.3					
2.1.3 2.1.4					
2.1.4					
2.1.6					
2.1.7		blications			
2.1.8					
2.2 7.3					
2.3 7.4					
3.		AIRCRAFT STRUCTURES DESI			
3.1 3.2	Structures Design Prin	nciples aintenance Principles			1
3.2 3.2.1		aintenance Principies nt			
	FAA AC 121-22 "Main	ntenance Review Board Procedure	s"		
3.2.2		Continued Airworthiness			
		Contract of the Work in 1000			



SHM Information – Minimize Intrepretation or Data Analysis

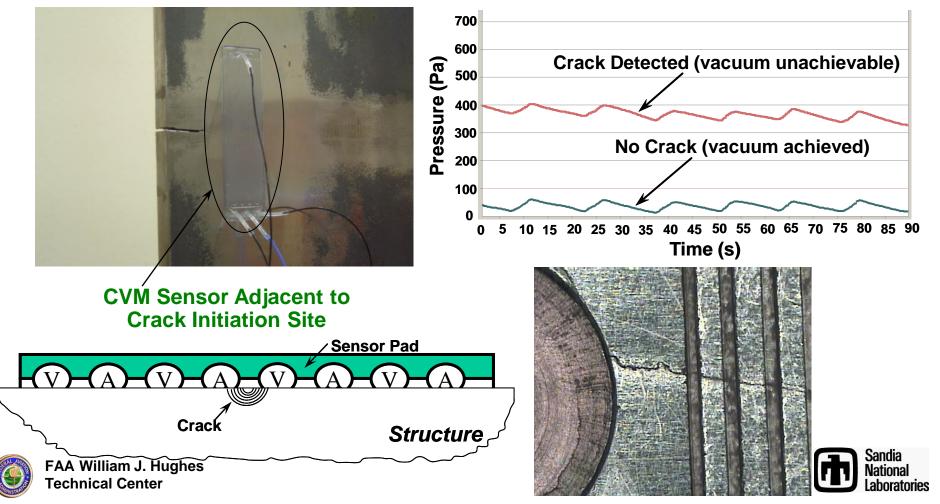
- Automated data analysis is the objective produce a "Green Light – Red Light" approach to damage detection
- Final assessment and interpretation by trained NDI personnel

Disbond Detection & Growth Monitoring with Piezoelectric Sensors

FAA William J. Hughes Technical Center

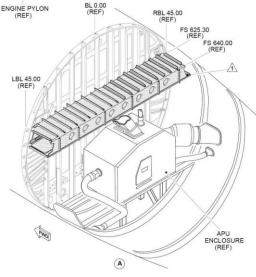
8

1.00

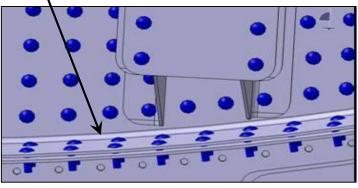

PULL TAB (CREATE | STEEL DIS

DISBOND)

LAMINATE-TO-


Comparative Vacuum Monitoring System

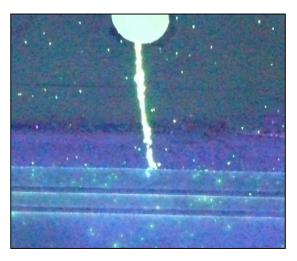
- Sensors contain fine channels vacuum is applied to embedded galleries (crack detection < 0.1" for alum. < 0.1" th.)
- Leakage path produces a measurable change in the vacuum level
- Doesn't require electrical excitation or couplant/contact



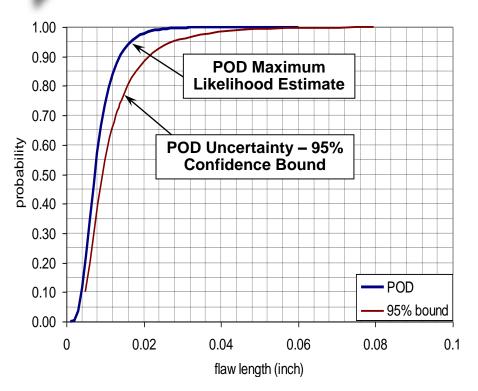
CVM Success on CRJ Aircraft

Pilot program with Bombardier and Air Canada


Inspect in the radius

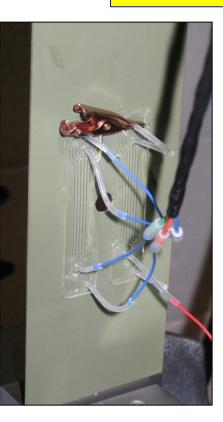

Sensor Issues:

- Design
- Surface preparation
- Access
- Connection
- Quality control


Aft Equipment Bay

CVM - Quantified Probability of Crack Detection for a Range of Variables

Cumulative Distribution Function of Detectable Flaw Lengths (0.040" th. primer panels)



FAA William J. Hughes Technical Center

Test Scenarios: Material **Thickness** Coating 2024-T3 0.040" bare 2024-T3 0.040" primer 2024-T3 0.071" primer 2024-T3 0.100" bare 2024-T3 0.100" primer 7075-T6 0.040" primer

0.071"

0.100"

7075-T6

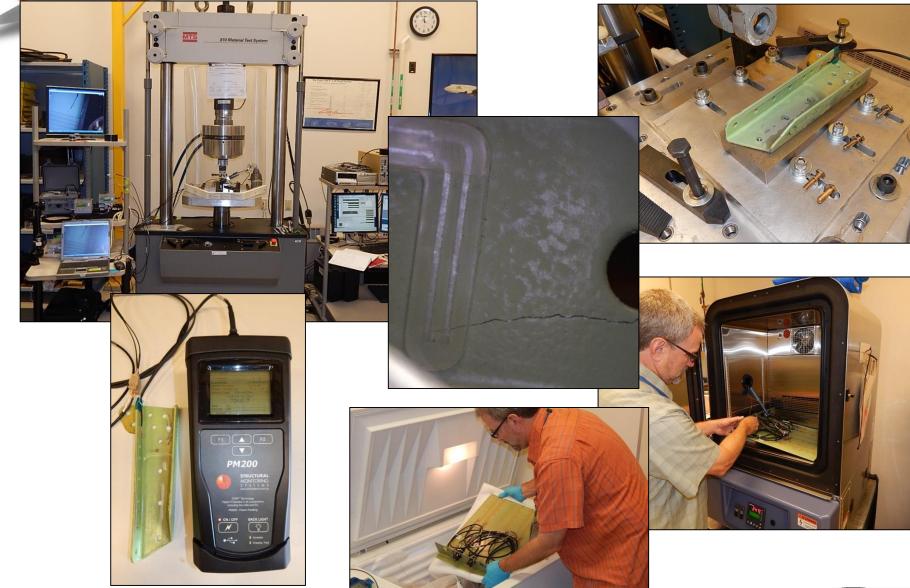
7075-T6

primer

primer

CVM Sensor Network Applied to 737 Wing Box Fittings

Alternate Means of Compliance with Current Visual Inspection Practice



737NG Center Wing Box – CVM Performance Tests

737NG Center Wing Box – Accumulating Successful Flight History

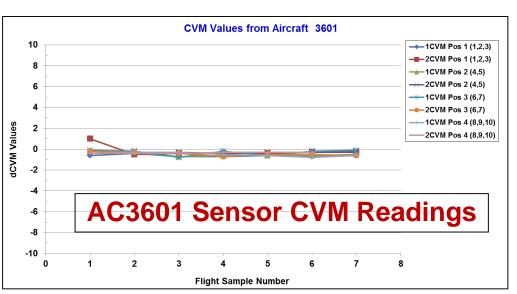
Aircraft Parked at Gate After Final Flight of the Day

Access to SLS Connectors Through Forward Baggage Compartment

Removal of Baggage Liner to Access 4 SLS Connectors Mounted to Bulkhead FAA William J. Hughes Technical Center



737NG Center Wing Box – CVM Sensor Monitoring



Connecting SLS Leads and Running PM-200 to Monitoring Device to Check Sensor Network

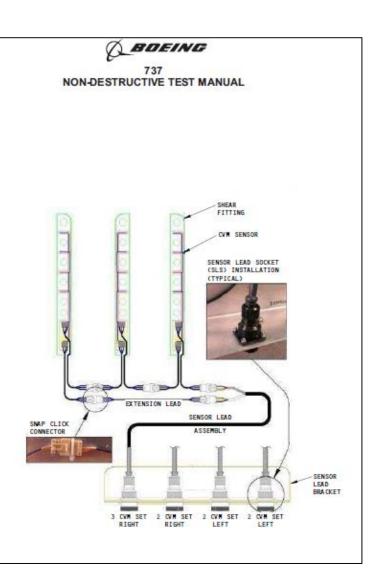
Logging Inspection Completion at Aircraft Gate

737 NDT Manual - New SHM Chapter Published (Nov 2015)

Building Block to Approval for Routine Use of SHM

BOEING			MyBoeingFleet Maintenance Documents	
Maintenance Doc:	s Co	ontact Us	Help	
Maintenance & Rep	pair Documents	5	Select a Product or Service 🗸 🗸	
737 Non-Destructive Testing Manual				
Document: D6-37239 Revision: 15Nov2015 Rev Level: 117	Search this document for: Search Tips	Submit	 ▲ Supplemental Videos → Go Back 	
Non-Destructive Testing Man Check boxes to add or remove	ual from search. <u>Check All</u> <u>Uncheck A</u>			
$\boxed{PART 01 - GENERAL}$ $\boxed{PART 02 - X - RAY}$ $\boxed{PART 04 - ULTRASONIC}$		hanged to PAR	T 05 – STRUCTURAL HEALTH MONITORING	
 ✓ PART 05 - COMPARATIVE VACUUM MONITORING ✓ PART 06 - EDDY CURRENT ✓ PART 09 - THERMOGRAPHY ✓ PART 10 - VISUAL/OPTICAL 				

737 NDT Manual – CVM Procedure Added


BOEING

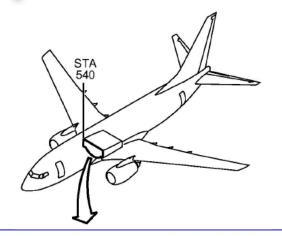
737 NON-DESTRUCTIVE TEST MANUAL PART 5 - COMPARATIVE VACUUM MONITORING

WING CENTER SECTION - SHEAR FITTINGS AT THE FRONT SPAR

- 1. Purpose
 - A. Use this comparative vacuum monitoring (CVM) procedure to help find cracks in the 111A2401-1 and -2 shear fittings at the front spar of the wing center section. See Figure 1 for the inspection areas.
 - B. This procedure can find cracks that are 0.75 inch (19.1 mm) long or longer.
 - C. The shear fittings are 7050-T7451 aluminum alloy.
 - D. Service Bulletin Reference:
 - (1) 737-57-1309
- 2. Equipment
 - A. General
 - (1) Comparative vacuum monitoring (CVM) is a structural health monitoring (SHM) system. The CVM system measures the different pressures between sensor galleries that have a vacuum or are at atmospheric pressure to find cracks in parts. See Figure 2 for some examples of CVM equipment.
 - (2) Use the equipment specified in this inspection procedure to do this procedure.
 - B. Instrument
 - (1) PM200; Structural Monitoring Systems (SMS)
 - C. Functional Test Socket
 - (1) PM200-9 or SP1131; Structural Monitoring Systems (SMS)
 - D. Comparative Vacuum Monitoring kit
 - (1) 737NG-FSSF-1KCVM CVM Installation Kit; Structural Monitoring Systems (SMS)
 - E. Software
 - (1) PM200 Management Software version 0.0.3276 or newer
 - F. Special Tools
 - (1) Consumables kit. See set up file: Part 5, 57-10-01 List of Necessary Materials
- 3. Prepare for the Inspection
 - A. See Set Up File Part 5, 57-10-01, for the List of Necessary Materials.
 - B. See Set Up Files Part 5, 57-10-01, CVM installation instructions for the instructions that follow:
 - (1) Prepare the surface of the 111A2401-1 and -2 shear fittings for inspection.
 - (2) Install the CVM sensors onto the shear fittings.
 - (3) Install the CVM leads.
 - (4) Install four sensor lead sockets (SLS) on the (SLS) bracket.
- 4. Instrument Calibration and Functional Test

737 NDT Manual – CVM Installation Instructions Added (Jan 2016)

<i>OBDEING</i>		MyBoeingFleet Maintenance Documents		
Maintenance Do	ocs Contact Us	Help		
Maintenance & Repair Documents		Select a Product or Service V		
737 Non-Destructive Testing Manual				
Document: D6-37239 Revision: 15Nov2015 Rev Level: 117	Search this document for: Submit Search Tips	 ▲ <u>Supplemental Videos</u> → <u>Back to Table of Contents</u> 		
PART 05 - COMPARATIVE VACUUM MONITORING Check boxes to add or remove from search. Check All Uncheck All				
PART 05, FRONT MATTER				
✓ <u>SECTION 57-10, MAIN FRAME</u>				
L				
Maintenance Do	ocs Contact Us	Help		
Export Controlled as ECCN 9E991, unless otherwise noted. Copyright © 1999-2015 The Boeing Company. All rights reserved. <u>Terms of Use</u> Release 20. (Build 30) (boldwp2)				


Installation Instructions

Boeing Service Bulletin – Modification to Allow for Routine Use of SHM Solution (June 2016)

BOEING SERVICE BULLETIN 737-57-1309

DO A DETAILED INSPECTION OR COMPARATIVE VACUUM MONITORING (CVM) INSPECTION OF THE CENTER WING BOX FRONT SPAR SHEAR FITTINGS FOR ANY CRACKS. IF ANY CRACK IS FOUND, REMOVE THE DAMAGED SHEAR FITTING, MAKE SURE THERE IS NO CRACKING IN THE UPPER PANEL AND INSTALL A NEW SHEAR FITTING AS GIVEN IN THIS SERVICE BULLETIN.

AT EACH SHEAR FITTING, IF NO CRACKING IS FOUND IT IS OPTIONAL TO ACCOMPLISH THE PREVENTIVE MODIFICATION BY REPLACING THE SHEAR FITTINGS.

Commercial			
D BOE	ING	Airplanes	737
			Service Bulletin
Number: Original Issue: Revision 1: ATA System:	737-57-1309 January 28, 2011 June 27, 2016 5714		Revision Transmittal Sheet
SUBJECT:	WINGS - Center Wing E Modification	Box - Front Spar Shear Fi	itting - Inspection, Repair and Preventive
This revision includ	es all pages of the servi	ice bulletin.	
COMPLIANCE INFORMATION RELATED TO THIS REVISION			
Effects of this Revision on airplanes on which Original Issue was previously done:			
None.			
REASON FOR REV	/ISION		
method for the front	t spar shear fitting. In ac	ddition, illustrations in fig	(M) inspection as an alternative inspection jures are changed to show correct views, s in figures are changed to clarify sealing

Overview of SHM Readiness

- Overall, there is a strong interest in SHM multitude of applications covering all aircraft structural, engine, and systems areas
- Industry's main concern with implementing SHM on aircraft is achieving a positive cost-benefit & time to obtain approval for SHM usage
- Research and development efforts should be focused on: global systems, sensor technology, system validation and integration, and regulatory guidance
- Standardization and guidelines are needed in certification, laboratory and field validation, and sensor design with aviation in mind
- SHM will run in parallel with current NDI inspections for a period of time accumulation of successful flight history will mitigate/eliminate this
- Industry would use SHM to detect cracks, delaminations, disbonds, corrosion and impact among others
- There is a wide variety of SHM sensors currently developed that have shown potential in aircraft applications. SHM maturity has grown exponentially so desired usage and need for certification is expected to rise rapidly.

Structural Health Monitoring for Aircraft: Viable Inspection Tool or Passing Fancy?

