A Composite NDI Training Course to Address the Growing Need for Composite Laminate Inspections

Airlines for America NDT – September 2016

Filament Diameters

- Carbon, Glass 7 microns
- Boron 50 microns
- Kevlar 12 microns
- Human Hair 75 microns

Stephen Neidigk, Dennis Roach, Tom Rice
Sandia National Labs
FAA Airworthiness Assurance Center

Alex Melton
Delta Air Lines

David Westlund, Rusty Jones
FAA
Presentation Overview

Introduction and Background

Class Modules and Objectives

Hands-On Training and Proficiency Specimen Set

First Deployment of the Composite NDI Training Class
Motivation for Composite NDI Training Class

Motivation - Extensive/increasing use of solid laminate composites on commercial aircraft and need for inspectors to maintain a level of proficiency via training and hands-on practice.

Composite Structures on Boeing 787 Aircraft

- Carbon laminate
- Carbon sandwich
- Fiberglass
- Aluminum
- Aluminum/steel/titanium pylons

Airbus A350 XWB

- 19% AUIALI
- 6% Steel
- 14% Titanium
- 8% Misc.

altairenlighten.com
Motivation for Composite NDI Training Class

Boeing 787

1,161 Ordered
455 Delivered

All Nippon Airways – 83, 50
United – 49, 30
American – 42, 17
Delta – 18, 0

Airbus A350

810 Ordered
36 Delivered

Qatar Airways – 80, 10
United – 35, 0
American – 22, 0
Delta – 25, 0

http://www.airbus.com/company/market/orders-deliveries/
Evaluate the performance of conventional ultrasonic inspection methods for flaw detection in solid laminate structures. 70 inspectors from 14 airlines participated.
POD Curves for 12-20 Ply Solid Laminate Family

Individual and Cumulative Comparisons

Overall:
- $POD_{[90/95]} = 1.29''$ dia.

Constant Thickness (12, 20, 28 plies):
- $POD_{[90/95]} = 0.86''$ dia.

Complex Geometry (tapered, curved, substructure, fasteners, honeycomb):
- $POD_{[90/95]} = 1.49''$ dia.

False Calls:
- Constant thickness = 0.4/inspector
- Complex Geometry = 4.0/inspector
- 34 ft.2 inspection area
Composite NDI Training Survey

In addition to the POD experiment, a Composite NDI Training Survey was conducted.

Question 16 - In your opinion, do Level I, II, and III training/qualifications provide the necessary expertise for both metal and composite NDI or should additional training take place for composite inspections?

Airline and MRO NDI Survey

<table>
<thead>
<tr>
<th>Composite NDI Training Survey Participants</th>
<th>Completed Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR-ASI (Indy)</td>
<td>Yes</td>
</tr>
<tr>
<td>American Airlines (Tulsa)</td>
<td>Yes</td>
</tr>
<tr>
<td>Aviation Technical Services, Inc (Seattle)</td>
<td>Yes</td>
</tr>
<tr>
<td>Delta Air Lines (Atlanta)</td>
<td>Yes</td>
</tr>
<tr>
<td>Delta Air Lines (MN)</td>
<td>Yes</td>
</tr>
<tr>
<td>FedEx (Indy)</td>
<td>Yes</td>
</tr>
<tr>
<td>FedEx (Los Angeles)</td>
<td>Yes</td>
</tr>
<tr>
<td>Goodrich Aerostructures (Chula Vista)</td>
<td>Yes</td>
</tr>
<tr>
<td>Kaltta Air LLC (Michigan)</td>
<td>Yes</td>
</tr>
<tr>
<td>Rohr Aero Services LLC (Alabama)</td>
<td>Yes</td>
</tr>
<tr>
<td>Southwest Airlines (TX)</td>
<td>Yes</td>
</tr>
<tr>
<td>Timco (Georgia)</td>
<td>Yes</td>
</tr>
<tr>
<td>United Airlines (Houston)</td>
<td>Yes</td>
</tr>
<tr>
<td>United Airlines (San Fran.)</td>
<td>Yes</td>
</tr>
<tr>
<td>UPS (KY)</td>
<td>Yes</td>
</tr>
<tr>
<td>US Airways (PA)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Only 25% of responders currently have special composite NDI training in place
The POD experiment and NDI Training Survey led to several key recommendations resulting in the Composite Inspector Training Class.

- Increased exposure to representative composite inspections – common industry NDI Proficiency Specimens
- Increased, focused composite NDI training
- Enhanced NDI procedures – deployment, signal interpretation, clear schematics showing structural configuration
 - Use of inspection coverage aids
 - Divide large area inspections into a number of smaller regions
 - Follow procedures
- Identified need for specific training that specifically addresses composite inspection
 - Unique challenges associated with composites
 - Additional routine exposure to composite laminate inspections
Composite Laminate NDI Training Class

Class Definition – General Training Content (cont.)

- **Target Class Length** – 2 days (1/2 classroom, 1/2 hands-on)
- **Format** – stand-alone course but assumption is minimum of Level I student
- **Instructor** modifies for specific needs

Goal of training is to enhance aircraft safety & optimize aircraft utilization by improving NDI flaw detection performance in composite aircraft structure.
Class Modules

1. Introduction, Objectives & Expected Outcome from Class
2. Composite Awareness – Materials, Design, Fabrication and Use
3. Composite NDI – Theory and Practice
4. Special Cases - Challenges & Lessons Learned
5. NDI Proficiency Specimens
6. Hands-On Exercises
2. Composite Awareness – Materials, Design, Fabrication and Use

What are Composites?

Common Materials used

Carbon, Glass 7 microns
Kevlar 12 microns
Boron 50 microns
Human Hair 75 microns

Types of Damage

Introduction to Repairs

Autoclave and VARTM Processing
3. Composite NDI – Theory and Practice

- Visual inspection of composites
- Basic ultrasonic inspection theory
- Ultrasonic deployment and options
- Ultrasonic equipment set up
- Mapping damage
- Ultrasonic signals from normal and damaged structure
- Phased array inspection
 - C-Scan generation
- Solid laminate inspection methods and sample results

Reference Standards

Transducers and Delay Lines

TCG Curves

Deployment Options

Setting Gates
3. Composite NDI – Theory and Practice

A-Scan, B-Scan, C-Scan

“Go” / “No-Go” Devices

Sizing Damage

Scan Indexing, Tapers and Substructure
3. Composite NDI – Theory and Practice

Brief introduction and sample results from:

- Various phased array systems
- CT Scanning
- DolphiCam
- Thermography
- Roller Probes
- LaserUT
- Digital Acoustic Video
4. Special Cases – Challenges & Lessons Learned

- Examples of operational damage and field inspection results
- Read and Follow the Procedures
 - *Caution using saved settings*
- Embrace New Technology – It Can Be Helpful
- Follow OEM Documentation

Accidental Damage from Ground Handling Equipment

Lightning Strike Damage
5. NDI Proficiency Specimens

Initial design guidelines were assembled at the 1st (August 2014) project kick-off meeting with industry partners and the FAA.

• Thickness, materials, flaw types, structural configurations etc.

Development Considerations:

• Support hands-on training exercises
• Support recurrent training and composite NDI exposure
• Can be used in “blind mode” to demonstrate inspector proficiency
• Multiple flaw profiles and configurations designed so that end users can put together a set that fits their specific training needs and budget
• All lessons and teaching points will be encompassed in a limited number of panel configurations (minimize cost)
• Specimen geometry designed for ease of construction
5. NDI Proficiency Specimens

Panel Configuration Summary - 8 total panels
- Configuration 1 - 3 variations
- Configuration 2 - 2 variations
- Configuration 3 - 3 variations

<table>
<thead>
<tr>
<th>Panel Configuration</th>
<th>Structure</th>
<th>Test Specimen</th>
<th>Primary Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration 1</td>
<td>24"x18" Panel with complex taper (10:1 and 20:1) and secondary bond</td>
<td>1a</td>
<td>Standard configuration 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1b</td>
<td>Additional Secondary bond and more subtle flaws (different flaw profile)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1c</td>
<td>Additional thickness (up to 64 plies) and different flaw profile</td>
</tr>
<tr>
<td>Configuration 2</td>
<td>24"x18" Panel with pads, fasteners, co-cured bonds, sealant, sound dampers</td>
<td>2a</td>
<td>Standard configuration 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2b</td>
<td>Different flaw profile</td>
</tr>
<tr>
<td>Configuration 3</td>
<td>16 ply solid laminate skin</td>
<td>3a</td>
<td>Standard configuration 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3b</td>
<td>Subtle impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3c</td>
<td>Large impact</td>
</tr>
</tbody>
</table>

Configuration 1
- Flat solid laminate skin

Configuration 2
- 24"x18" Panel with pads, fasteners, co-cured bonds, sealant, sound dampers

Configuration 3
- 16 ply solid laminate skin
5. NDI Proficiency Specimens

Example Engineered Flaws in Proficiency Specimens
Embedded in the panels

- Pillow insert
 - Delamination

- Grease
 - Contamination

- Carbospheres
 - Localized porosity

- Grafoil® insert
 - Tight delamination

- Paper backing in the laminate
 - Foreign object damage

- Paper Backing in the bond line
 - Foreign object damage

- Pillow insert in the bond line
 - Disbond
Example Engineered Flaws in Proficiency Specimens

Added to the panels after fabrication

- Concentric flat bottom holes
 *Impact damage

- Flat bottom holes
 *Significant delamination

- Grinder Cut
 *Cracked or broken substructure

- Grinder Disk Grove
 *Gouge or deep scratch

- Missing Sealant

- Sealant
 *Raised material, not a flaw
5. NDI Proficiency Specimens

Specimen Design 1c – Flaw Profile
Structure: Thick Specimen - Taper (10:1 and 20:1) and secondary bond

Fabrication support from NORDAM Interiors and Structures
Darryl Graham and Jeff Harper
5. NDI Proficiency Specimens

Specimen 1c – Inspection Results
Structure: *Thick Specimen* - Taper (10:1 and 20:1) and secondary bond

Teaching Points:
Follow procedures to set proper gates and detect second layer defects
Teaching Points:
- Defect detection using PA can require combination of Amp., TOF and A-Scan.
- dB drop criteria
5. NDI Proficiency Specimens

Configuration 2

Structure: Uniform thickness skin, pads, fastened shear tie flanges, co-cured stiffeners, sealant

- Built-up pad section (8 plies)
- Co-cured stiffener flanges (8 plies)
- Shear tie flange
- Sealant between flange and pad
- Fastened shear tie flange
- Sound damper (acoustic tiles)
- 16 Ply thick skin
5. NDI Proficiency Specimens

Specimen Design 2a – Flaw Profile

<table>
<thead>
<tr>
<th>ITEM #</th>
<th>FLAW TYPE</th>
<th>SIZE</th>
<th>PLY LAYER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MISSING SEALANT</td>
<td>AS SHOWN</td>
<td>BTN PLY 8 & SHEAR TIE FLANGE</td>
</tr>
<tr>
<td>2</td>
<td>PILLOW INSERT</td>
<td>Ø 2.00</td>
<td>BTN PLY 16 & SOUND DAMPER</td>
</tr>
<tr>
<td>3</td>
<td>PILLOW INSERT</td>
<td>1.00 X 1.00</td>
<td>BTN LAM PLY 16 & ST PAD PLY 1</td>
</tr>
<tr>
<td>4</td>
<td>PILLOW INSERT</td>
<td>1.00 X 1.00</td>
<td>BTN PLY 2 & 3 OF STIFFENER</td>
</tr>
<tr>
<td>5</td>
<td>PILLOW INSERT</td>
<td>Ø 1.50</td>
<td>BTN PLY 4 & 5 (25%)</td>
</tr>
<tr>
<td>6</td>
<td>PILLOW INSERT</td>
<td>1.75 X 0.50</td>
<td>BTN PLY 4 & 5 OF ST PAD</td>
</tr>
<tr>
<td>7</td>
<td>PILLOW INSERT</td>
<td>Ø 1.25</td>
<td>BTN PLY 8 & 9 (50%)</td>
</tr>
<tr>
<td>8</td>
<td>PILLOW INSERT</td>
<td>Ø 0.50</td>
<td>BTN PLY 6 & 7 OF ST PAD</td>
</tr>
<tr>
<td>9</td>
<td>DREMEL CUT</td>
<td>~0.05 X 1.00</td>
<td>SHEAR TIE FLANGE AS SHOWN</td>
</tr>
<tr>
<td>10</td>
<td>FLAT BOTTOMED HOLE</td>
<td>Ø 0.25</td>
<td>0.015" " (BTN PLIES 6 & 7)</td>
</tr>
<tr>
<td>11</td>
<td>FLAT BOTTOMED HOLE</td>
<td>Ø 0.75</td>
<td>0.070" " (BTN PLIES 12 & 13)</td>
</tr>
<tr>
<td>12</td>
<td>PREFREG BACKING</td>
<td>1.25 X 1.25</td>
<td>BTN PLY 16 & STIFFENER PLY 1</td>
</tr>
<tr>
<td>13</td>
<td>PREFREG BACKING</td>
<td>2.00 X 2.00</td>
<td>BTN PLY 8 & 9 (50%)</td>
</tr>
<tr>
<td>14</td>
<td>GREASE</td>
<td>Ø 1.50</td>
<td>BTN PLY 8 & 9 (50%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM #</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
<th>DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>FLAT HEAD BOLT</td>
<td>12</td>
<td>100" FL HD, 1/4-20UNC-2A X 0.500</td>
</tr>
<tr>
<td>16</td>
<td>HEX NUT</td>
<td>12</td>
<td>1/4-20UNC-2B</td>
</tr>
<tr>
<td>17</td>
<td>SHEAR TIE FLANGE</td>
<td>2</td>
<td>SEE SHEAR TIE FLANGE DRAWING</td>
</tr>
<tr>
<td>18</td>
<td>SOUND DAMPER</td>
<td>4</td>
<td>4.5" X 5.0" SMACSONIC PADS</td>
</tr>
<tr>
<td>19</td>
<td>SEALANT</td>
<td>AS NEEDED</td>
<td></td>
</tr>
</tbody>
</table>

INSPECTION SIDE (TOOL SIDE)
5. NDI Proficiency Specimens

Specimen 2a – Inspection Results
Structure: Uniform thickness skin, pads, fastened shear tie flanges, co-cured stiffeners, sealant

OmniScan 3.5L64 (3.5 MHz)
A-Scan Exercises

<table>
<thead>
<tr>
<th>Panel</th>
<th>Description</th>
<th>Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>General A-Scan Inspection Procedure</td>
<td>All panels</td>
<td></td>
</tr>
<tr>
<td>1 - Calibration - Set Material Velocity and TCG Curve</td>
<td>Ref Std</td>
<td></td>
</tr>
<tr>
<td>2 - Mark substructure on surface</td>
<td>1a,1b,1c,2a,2b</td>
<td></td>
</tr>
<tr>
<td>3 - Defect detection in uniform thickness skin</td>
<td>1a,1b,1c,3a,3b,3c</td>
<td></td>
</tr>
<tr>
<td>4 - Defect detection in tapered skin</td>
<td>1a,1b,1c</td>
<td></td>
</tr>
<tr>
<td>5 - Inspection of bonded substructure</td>
<td>1a,1b,1c</td>
<td></td>
</tr>
<tr>
<td>6 - Inspection of co-cured substructure</td>
<td>2a,2b</td>
<td></td>
</tr>
<tr>
<td>7 - Defect detection around other aircraft elements</td>
<td>2a,2b</td>
<td></td>
</tr>
</tbody>
</table>

PA Exercises

<table>
<thead>
<tr>
<th>Panel</th>
<th>Description</th>
<th>Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>General C-Scan Inspection Procedure</td>
<td>All panels</td>
<td></td>
</tr>
<tr>
<td>1 - PA Calibration</td>
<td>Ref Std</td>
<td></td>
</tr>
<tr>
<td>2 - Set up TCG Curve</td>
<td>ST8872</td>
<td></td>
</tr>
<tr>
<td>3 - Setting gates</td>
<td>All panels</td>
<td></td>
</tr>
<tr>
<td>4 - Analyzing C-Scan results</td>
<td>All panels</td>
<td></td>
</tr>
</tbody>
</table>
6. Hands-On Exercises

- Students follow inspection procedure and exercises to conduct inspections on the Proficiency Specimens
- Templates are used to check inspection results
- Immediate instructor feedback to identify hits, misses and false calls
- Markings on panel are compared to C-Scan inspection results
First Deployment of the Composite NDI Training Class - July 2016

- Conducted the class at Delta Air Lines
- 20 inspectors, engineers, and FAA participants
- Presented the full class and conducted hands-on exercises using the Proficiency Specimens

Feedback from the first class deployment:
- Helpful background on composite materials and NDI refresher
- TCG, inspection over acoustic tiles, C-Scan data analysis, set up and calibration of phased array transducer, new appreciation for setup files, immediate hit/miss feedback
- Comfort level increased
Outcome and Path Forward

- Development of NDI training class is complete
- Successful completion of first class deployment with an airline
- Class will provide:
 - A general understanding of composite materials
 - An in-depth understanding of the nondestructive testing methods used to inspect carbon fiber parts
 - An **overall inspection proficiency** on composite aircraft parts made up of a variety of structural configurations
- Airlines/users customize for their particular needs

In the process of making the class materials available to the public:
- Class modules
- Proficiency specimen drawings and specifications
- Generalized A-Scan and C-Scan inspection procedures
- Hands-on exercises
- Grading and instructor materials
Questions?

If you are interested in obtaining the Composite Inspector Training materials, contact me:

Stephen Neidigk
sneidig@sandia.gov